Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II.
نویسندگان
چکیده
Hypertension caused by angiotensin II is dependent on vascular superoxide (O2*-) production. The nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase is a major source of vascular O2*- and is activated by angiotensin II in vitro. However, its role in angiotensin II-induced hypertension in vivo is less clear. In the present studies, we used mice deficient in p47(phox), a cytosolic subunit of the NADPH oxidase, to study the role of this enzyme system in vivo. In vivo, angiotensin II infusion (0.7 mg/kg per day for 7 days) increased systolic blood pressure from 105+/-2 to 151+/-6 mm Hg and increased vascular O2*- formation 2- to 3-fold in wild-type (WT) mice. In contrast, in p47(phox-/-) mice the hypertensive response to angiotensin II infusion (122+/-4 mm Hg; P<0.05) was markedly blunted, and there was no increase of vascular O2*- production. In situ staining for O2*- using dihydroethidium revealed a marked increase of O2*-production in both endothelial and vascular smooth muscle cells of angiotensin II-treated WT mice, but not in those of p47(phox-/-) mice. To directly examine the role of the NAD(P)H oxidase in endothelial production of O2*-, endothelial cells from WT and p47(phox-/-) mice were cultured. Western blotting confirmed the absence of p47(phox) in p47(phox-/-) mice. Angiotensin II increased O2*- production in endothelial cells from WT mice, but not in those from p47(phox-/-) mice, as determined by electron spin resonance spectroscopy. These results suggest a pivotal role of the NAD(P)H oxidase and its subunit p47(phox) in the vascular oxidant stress and the blood pressure response to angiotensin II in vivo.
منابع مشابه
Microsomal prostaglandin synthase-1-derived prostaglandin E2 protects against angiotensin II-induced hypertension via inhibition of oxidative stress.
Prostaglandin (PG) E(2) has an established role in the regulation of vascular tone and reactivity. The present study examined the role and mechanism of microsomal PG synthase-1 (mPGES-1) in vascular response to angiotensin II (Ang II) infusion. A 7-day Ang II infusion at 0.35 mg/kg per day via osmotic minipump had no obvious effect on mean arterial blood pressure in mPGES-1(+/+) mice but induce...
متن کاملRole of p47 in Vascular Oxidative Stress and Hypertension Caused by Angiotensin II
Hypertension caused by angiotensin II is dependent on vascular superoxide (O2 ) production. The nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase is a major source of vascular O2 and is activated by angiotensin II in vitro. However, its role in angiotensin II–induced hypertension in vivo is less clear. In the present studies, we used mice deficient in p47, a cytosolic subunit of the...
متن کاملp47(phox) is required for afferent arteriolar contractile responses to angiotensin II and perfusion pressure in mice.
Myogenic and angiotensin contractions of afferent arterioles generate reactive oxygen species. Resistance vessels express neutrophil oxidase-2 and -4. Angiotensin II activates p47(phox)/neutrophil oxidase-2, whereas it downregulates NOX-4. Therefore, we tested the hypothesis that p47(phox) enhances afferent arteriolar angiotensin contractions. Angiotensin II infusion in p47(phox) +/+ but not -/...
متن کاملCyclooxygenase-2 inhibitors attenuate angiotensin II-induced oxidative stress, hypertension, and cardiac hypertrophy in rats.
Angiotensin II is an important oxidative stress mediator. Our previous studies have indicated that the potent antioxidative properties of acetylsalicylic acid play an important role in its cardiovascular protective effects. There are some ongoing controversies concerning the use of selective cyclooxygenase-2 inhibitors in cardiovascular disease. The aim of this study was to determine whether th...
متن کاملWine polyphenols improve endothelial function in large vessels of female spontaneously hypertensive rats.
Red wine polyphenols (RWPs) have been reported to prevent hypertension and endothelial dysfunction. Several individual RWPs exert estrogenic effects. We analyzed the possible in vivo protective effects on blood pressure and endothelial function of RWPs in female spontaneously hypertensive rats (SHR) and its relationship with ovarian function. RWPs (40 mg/kg by gavage) were orally administered f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hypertension
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2002